Projects from the Geothermal Hackathon 2021

geothermal_skull_thumb.png

The second Geothermal Hackathon happened last week. Timed to coincide with the Geosciences virtual event of the World Geothermal Congress, our 2-day event brought about 24 people together in the famous Software Underground Chateau (I’m sorry if I missed anyone!). For comparison, last year we were 13 people, so we’re going in the right direction! Next time I hope we’re as big as one of our ‘real world’ events — maybe we’ll even be able to meet up in local clusters.

Here’s a rundown of the projects at this year’s event:

Induced seismicity at Espoo, Finland

Alex Hobé, Mohsen Bazagan and Matteo Niccoli

Alex’s original workflow for creating dynamic displays of microseismic events was to create thousands of static images then stack them into a movie, so the first goal was something more interactive. On Day 1 Alex built a Plotly widget with a time zoomer/slider in a Jupyter Notebook. On day 2 he and Matteo tried Panel for a dynamic 3D plot. Alex then moved the data into LLNL Visit for fully interactive 3D plots. The team continues to hack on the idea.

geothermal_hack_2021_seismic.png

Fluid inclusions at Coso, USA

Diana Acero-Allard, Jeremy Zhao, Samuel Price, Lawrence Kwan, Jacqueline Floyd, Brendan, Gavin, Rob Leckenby and Martin Bentley

Diana had the idea of a gas analysis case study for Coso Field, USA. The team’s specific goal was to develop visualization tools for interetpaton of fluid inclusion gas data to identify fluid types, regions of permeability, and geothermal processes. They had access to analyses from 29 wells, requiring the usual data science workflow: find and load the data, clean the data, make some visualizations and maps, and finally analyse the permeability. GitHub repo here.

geothermal_hack_2021_fluid-incl.png

Utah Forge data pipeline

Andrea Balza, Evan Bianco, and Diego Castañeda

Andrea was driven to dive into the Utah FORGE project. Navigating the OpenEI data portal was a bit hit-and-miss, having to download files to get into ZIP files and so on (this is a common issue with open data repositories). The team eventually figured out how to programmatically access the files to explore things more easily — right from a Jupyter Notebook. Their code for any data on the OpenEI site, not just Utah FORGE, so it’s potentially a great research tool. GitHub repo here.

geothermal_hack_2021_forge.png

Pythonizing a power density estimation tool

Irene Wallis, Jan Niederau, Hannah Wood, Will Middlebrook, Jeff Jex, and Bill Cummings

Like a lot of cool hackathon projects, this one started with spreadsheet that Bill created to simplify the process of making power density estimates for geothermal fields under some statistical assumptions. Such a clear goal always helps focus the mind and the team put together some Python notebooks and then a Streamlit app — which you can test-drive here! From this solid foundation, the team has plenty of plans for new directions to take the tool. GitHub repo here.

geothermal_hack_2021_streamlit2.png
geothermal_hack_2021_streamlit1.png

Computing boiling point for depth

Thorsten Hörbrand, Irene Wallis, Jan Niederau and Matt Hall

Irene identified the need for a Python tool to generate boiling-point-for-depth curves, accommodating various water salinities and chemistries. As she showed during her recent TRANSFORM tutorial (which you must watch!), so-called BPD curves are an important part of geothermal well engineering. The team produced some scripts to compute various scenarios, based on corrections in the IAPWS standards and using the PHREEQC aqueous geochemistry modeling software. GitHub repo here.

geothermal_hack_2021_bpd-curves.png

A big Thank You to all of the hackers that came along to this virtual event. Not quite the same as a meatspace hackathon, admittedly, but Gather.town + Slack was definitely an improvement over Zoom + Slack. At least we have an environment in which people can arrive and immediately get a sense of what is happening in the event. When you realize that people at the tables are actually sitting in Canada, the US, the UK, Switzerland, South Africa, and Auckland — it’s clear that this could become an important new way to collaborate across large distances.

geothermal_hack_2021_chateau.png

Do check out all these awesome and open-source projects — and check out the #geothermal channel in the Software Underground to keep up with what happens next. We’ll be back in the future — perhaps the near future! — with more hackathons and more geothermal technology. Hopefully we’ll see you there! 🌋

The hot rock hack is back

shirt_skull.png

Last year we ran the first ever Geothermal Hackathon. As with all things, we started small, but energetic: fourteen of us worked on six projects. Topics ranged from project management to geological mapping to natural language processing. It was a fun two days not thinking about coronavirus.

This year we’ll be meeting up on Thursday 13 and Friday 14 May, starting right after the Geoscience Virtual Event of the World Geothermal Congress. Everyone is invited — geoscientists, engineers, data nerds, programmers. No experience of geothermal is necessary, just creativity and curiosity.

Projects are already being discussed on the Software Underground; here are some of the ideas:

  • Data-munging project for Utah Forge, especially well 58-32.

  • Update the Awesome list Thomas Martin started last year.

  • Implementing classic, or newly published, equations and algorthims from the literature.

I expect the preceeding WGC event will spark some last-minute projects too. But for the time being, you’re welcome to add or vote on ideas on the event page. What tools or visualizations would you find useful?


Build some digital geo skills

📣 If you’re looking to build up your coding skills before the hackathon — or for a research project or an idea at work — join us for a Python class. We teach the fundamentals of Python, NumPy and matplotlib using geological and geophysical examples and geo-familiar datasets. There are two classes coming up in May (Digital Geology) and June (Digital Geophysics).